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Abstract—High-performance bandpass and bandstop mi-
crowave coplanar filters, which operate from 22 to 91 GHz, have
been fabricated on Si substrates. This was achieved using an
optimized proton implantation processthat convertsthe standard
low-resistivity (~10 € - cm) Si to a semi-insulating state. The
bandpassfiltersconsist of coupled linesto form a seriesresonator,
whilethebandstop filter wasdesigned in adouble-folded short-end
stub structure. For the bandpass filters at 40 and 91 GHz, low
insertion loss was measured, close to electromagnetic simulation
values. We also fabricated excellent bandstop filterswith very low
transmission loss of ~1 dB and deep band rejection at both 22
and 50 GHz. The good filter performance was confirmed by the
higher substrate impedance to ground, which was extracted from
the well-matched S-parameter equivalent-circuit data.

Index Terms—Bandpass, bandstop, filter,

millimeter wave, Si.

integration,

|. INTRODUCTION

HE concept of integrating filters with CMOS monolithic

microwave integrated circuits (MMICs) on silicon (S)
substrates [1]-{3] is appealing because of lower cost and com-
pact system considerations[4]. This requirement becomes even
more urgent as the operation frequency of Si communication
integrated circuits (ICs) increases. However, the performance
of microwave filters integrated on Si suffers from the high RF
loss and crosstalk of the low-resistivity (10 €2 -cm) Si substrates
[5]12], as does the quality of inductors and transmission
lines on Si. This is the fundamental limitation of Si-based RF
circuits, even using advanced Si-on-insulator (SOI) technol ogy.
Several methods have been proposed including using porous Si
fabricated by anodic etching [11] or microelectromechanical
system (MEMYS) technology [1], [12], but these nonconven-
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Fig. 1. Photographic image of the fabricated bandpass filters designed for the
W -band of ~94 GHz. The dark area in the photograph is metal pattern. The
total length is 620 y«m, while the central conductor hasalength ~ X, /2.

tiona very large scale integration (VLSI) technologies face
additional processintegration issues and packaging challenges.
To overcome this problem, we have previously developed an
ion-implantation technology that can convert conventional Si
substrates (10 €2 - cm) to a semi-insulating state (~10° €2 - cm)
[5]-10]. Good performance has been realized for an integrated
bandpass filter on Si up to 40 GHz [10]. In this paper, we
extend the operation frequency of the bandpass filter into the
W -band and also investigate microwave bandstop filters. The
ion implantation was optimized for better compatibility with
current VLSI processes. Using this modified technology, we
have achieved excellent RF performance, close to the ideal
electromagnetic (EM) simulations, for both coplanar bandpass
and bandstop filters from 22 to 91 GHz. These excellent results
suggest that the microwave coplanar filters can be integrated
into CMOS MMICs on Si substrates, for single chip radio
applications, using the simple ion-implantation process.

Il. FILTER DESIGN AND FABRICATION

The filters were designed using the EM simulation software
IE3D. A coplanar waveguide (CPW) structure was used for the
filter design since it can be well integrated into existing RF ICs
on Si substrates without the need for incorporating via-holes.
For the design of microwave components, the CPW structure
is less sensitive to the substrate thickness and substrate dielec-
tric constant than microstrip structures. The filters have 50-2
input impedance with 150-;m ground-signal—ground (GSG)
coplanar transmission lines for good RF impedance matching.
Fig. 1 shows a photographic image of the fabricated W -band
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Fig. 2. Image of thefabricated bandstop filters designed for 52 GHz. Thedark
area in the photograph is metal pattern. The total length is 495 pm, while the
folded structure reduces the slot length to ~ A, /8. (A bandstop filter with a
22-GHz center frequency was also designed and studied.)

bandpass filters. Here, the values of the equivalent capacitance
and inductance depend on the gap spacing between the coplanar
couple lines and the width of the central line. The total filter
length is approximately A /2 with each stub finger 25-:m wide.
The fabricated bandstop filter is shown in Fig. 2. The width of
the central conductor is 20 ;m and each stub width is 10 ym
with a gap of 15 pm. At resonant frequencies, the inner /4
slots transfer the equivalent open circuit to a short circuit, thus,
a bandstop response was obtained [1], [2]. The bandstop filter
has adouble-folded short-end stub form, which reducesthefilter
size from A\, /4 to A,/8 by folding stubs and slots in the filter
structure [1], [2].

The filters were fabricated on SiO./Si substrates by
patterning a 4-pm-thick Al metal layer deposited on the
1.5-pm-thick SiO, layer aready grown for better substrate
isolation. An improved ~4-MeV proton implantation scheme
[5]-10] was performed after the filter fabrication. This avoids
potential contamination to the VLSI process line and uses a
commercia thick photoresist. It is important to notice that
the unmasked MOSFET and capacitor will fail due to the
damage to the dielectric layer by proton implantation [6].
Therefore, the thick photoresist in combination of optimized
energy are the key factors to realize an integrated single-chip
radio. Fabricated filters were characterized using an HP 8510C
Network Analyzer and a probe station up to 110 GHz without
any deembedding procedure.

I1l. RESULTS AND DISCUSSION
A. Transmission Line

Since the substrate RF loss is a key factor for filters, we
first discuss the RF loss in proton-implanted transmission
lines. Fig. 3 shows the measured and simulated power loss of
1000-m-long CPW transmission lines up to 110 GHz with or
without the proton implantation. The optimized proton-im-
plantation process, performed after the wafer processing,
significantly reduces the RF loss from the S substrates,
keeping it at lessthan 0.6 dB and up to 110 GHz. This excellent
microwave performance is close to the ideal IE3D simulation
results for transmission lines on semi-insulating Si with resis-
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Fig. 3. Measured and simulated power loss for 1-mm-long CPW transmission
lines fabricated on 1.5-um SiO./Si substrates with or without proton
implantation.
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Fig.4. Measured and simulated characteristics of abroad-band bandpassfilter
at 91 GHz fabricated on 1.5-um SiO./Si substrates: (a) with and (b) without
the proton implantation. Both ideal IE3D designed filter characteristics and
equivalent-circuit modeled data are shown for comparison.

tivity of 1 M - cm used in |E3D. The small increasing loss with
increasing frequency for transmission lines with implantation
is believed to be due to the conductor loss, but has only a
weak effect on filter performance, as will be shown below.
The modified proton implantation process can also be used for
microwave filtersintegrated on Si.

B. Bandpass Filter

Fig. 4(a) and (b) compares the RF characteristics of W -band
bandpass filters (Fig. 1) for devices with and without the
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Fig. 5. Measured and simulated 40-GHz bandpass filter characteristics on
1.5-4m SiO./Si substrates: (a) with and (b) without proton implantation. Both
ideal |E3D designed filter characteristics and equivalent-circuit modeled data
are shown.

optimized proton implantation, respectively. Similar results
were obtained for previously published 40-GHz bandpass
filters [10] [see Fig. 5(a) and (b)]. The simulations for ideal
IE3D designed filters are included for comparison. For filters
with the proton implantation, excellent RF performance was
achieved with only —1.6-dB 521 loss at a peak transmission at
91 GHz [see Fig. 4(d)]. Thisis consistent with the small peak
transmission loss of the proton implanted 40 GHz filter, shown
in Fig. 5(8). The measured transmission and bandwidth are
close to the ideal values. To the best of our knowledge, thisis
the first demonstration of high-performance filters at W-band
on Si substrates, which use a VL SI-compatible process. Poorer
peak transmission of —12 dB was measured for the un-im-
planted filter. Thislargelossis slightly higher than the —10-dB
peak transmission loss for 40 GHz filters shown in Fig. 5(b),
which is due to the increased loss at higher frequencies. The
—10- to —12-dB loss is greater than the RF gain improvement
of MOSFET device scaling down for 2-3 VLS| technology
generations [13]. The large return loss, over a wide frequency
range, makes these un-implanted filters unacceptable for RF
circuit integration.

C. Bandstop Filter

Fig. 6(a) and (b) shows the RF characteristics for 20-GHz
bandstop filters on SiO»/Si substrates and the effects of the
proton implantation. The filters are the same type as shown in
Fig. 2, but designed at alower frequency of 20 GHz. The IE3D
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Fig. 6. Measured and simulated characteristics of bandstop filters at 22 GHz
on 1.5-um SiO,/Si substrates: (a) with and (b) without proton implantation.
Both ideal IE3D designed filter characteristics and equivalent-circuit modeled
data are shown.

simulation isincluded in Fig. 6(a) for comparison. Without im-
plantation, thereisalarge transmission lossfrom —8to —17 dB
and from 1 to 110 GHz. There is no band rejection at the de-
signed 22-GHz frequency. These poor results show that such
bandstop filters are not useful in existing VLS| technology. The
oppositeisthe casefor proton-implanted bandstop filters, which
display low transmission loss, i.e., only —1.3and —0.5dB at 40
and 80 GHz, respectively. The bandstop frequencies at 22, 59,
and 105 GHz arisefrom the odd (1, 3, and 5) harmonic frequen-
cies of the filter, as analyzed by IE3D simulation. The results
are close to the ideal IE3D simulation values.

Fig. 7(a) and (b) compares the RF characteristics of 50-GHz
bandstop filters, which have the folded single-end stub structure
showninFig. 2. Here, again, excellent performanceis shown by
the proton-implanted stopband filter, but the performance of the
standard one is unacceptable.

D. Substrate-Loss Analysis

Here, we describe the use of equivalent-circuit modelsto an-
alyze and quantize the substrate-loss effects in the studied fil-
ters. Fig. 8(a) and (b) showsthe physically based equivalent-cir-
cuit models for bandpass and bandstop filters, respectively. For
bandpass filters, the series (L.; + L.2)C, represents the res-
onator realized by the coupling lines, and the shunt resistor R,
and capacitor C,y;, to ground models the Si substrate loss. L
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Fig. 7. Measured and simulated characteristics of bandstop filters at 52 GHz
on 1.5-um SiO. /S substrates: (a) with and (b) without proton implantation.

Both ideal 1E3D designed filter characteristics and equivalent-circuit modeled
data are shown.
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Fig. 8. Equivalent-circuit models of: (a) bandpass and (b) bandstop filters on
Si substrates.

and L, are theinductance of stubs at the input and output, and
the gap capacitance between two portsis expressed as C. The
series resistors R, and R,3 describe the parasitic resistor loss
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Fig. 9. Magnitude of the substrate impedance extracted using the
equivalent-circuit models shown in Fig. 8.

and R, is the RF loss between coupled structures. As shown
in Figs. 4 and 5, good agreement between measured and simu-
lated Sa21, S11, and bandwidth are obtained at all frequenciesfor
both filter cases. For the bandstop filters, the central conductor
is represented as an inductor and the shunt capacitors imitate
the two gaps near port 1 [4]. Two resistors are added in parallel
with capacitorsto model theleakage path of the capacitorson Si.
This arises from the substrate | oss, as does the shunt resistance
and capacitance to ground. Simulated results are al'so shown in
Figs. 6 and 7, and good agreement between measured and mod-
eled S-parameters is obtained. The equivalent circuit can only
simulatethefirst resonance since the lumped-element circuit be-
haves nonperiodically. Thus, the physicaly based models are
suitable for extraction of the substrate loss.

Fig. 9 shows the magnitude of | Z,,,;,| composed of shunt re-
sistance R, and capacitance Cs,,;,, extracted from the equiva-
lent-circuit modelsin Fig. 8. For conventiona filterson Si, the
substrateimpedancesare small, and below 150 £2 over thewhole
frequency range. The difference in Z,,, for filters designed
at different frequencies results from the different filter sizes.
For un-implanted bandpass filters, the small shunt impedance
to ground explains the poor peak transmission and large return
loss. Also, the small |Zs,,| in the un-implanted bandstop fil-
ters is consistent with the large return loss and poor band re-
jection. In contrast, the implanted filters show substrate imped-
ances ~10x larger at >1000 Q2—this greatly reduces the loss
for RF devices.

IV. CONCLUSION

We have described good RF performance over the range
from 22 to 91 GHz for both bandpass and bandstop microwave
coplanar filters fabricated on Si substrates that have undergone
an optimized proton implantation process. The excellent RF
performance is close to IE3D simulated characteristics. In
contrast, much poorer filter characteristics were measured for
un-implanted filter devices. Here, the substrate impedance was
found to be the major cause of the poor filter performance, as
determined by equivalent-circuit model analysis. The modified
proton implantation scheme, compatible with current VLS
technology and applied after whole wafer processing, has great
potential for integrating microwave filters into MMICs on Si
substrates where the cost and size can be optimized.
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